

EXPERIMENT NUMBER – Practical 5

NAME - RAJDEEP JAISWAL

BRANCH. - B.TECH (CSE).

UID. - 20BCS2761

SEM – 2ND

SEC& GROUP = 26 (B)

D.O.P = 2ND MAY 2021

SUBJECT = BEEE LAB

AIM OF THE EXPERIMENT – TO DESIGN A LED FLASHER

APPARATUS:

S.No.	Name	Specification & Rating	Quantities in Number
1.	Resistance	100 ohm	1
2.	LED Light	0-2V	1
3.	Breadboard		1
4.	Connecting Wires	As per Requirement	

CIRCUIT DIGRAM:

SUBJECT CODE 21E-20ELP-152_20BCS26_B

STEPS OF THE EXPERIMENTS :

- 1. Open TINKERCAD.
- 2.Place Breadboard in white space.
- 3. Connect LEDs of different colours in Breadboard.
- 4. Connect Resistances in Breadboard.
- 5. Choose and connect Arduino Board in Breadboard.
- 6.Make other left out and necessary connections using connecting wires.
- 7. Write the correct Code in the code section of TINKERCAD.

CALCULATIONS / FORMULAES USED :

CODINGS : / CODE:

Int led_flash=13; //defines usage of pin 13 for connecting LED void setup()
{
 pinMode(led_flash, OUTPUT);
 // initialize digital pin led_flash as an output.
 // the loop function runs over and over again forever void loop()
 {
 digitalWrite(led_flash, HIGH);
}

// turn the LED on (HIGH is the voltage level)
delay(1000); // wait for a second digitalWrite(led_flash, LOW);

// turn the LED off by making the voltage LOW delay(1000); // wait for a second
}

CODE USED IN TINKERCAD: (IN TEXT FORM) :

void setup() {

pinMode(13, OUTPUT); }

void loop() {

digitalWrite(13, HIGH); delay(1000); // Wait for 1000 millisecond(s) digitalWrite(13, LOW); delay(100); // Wait for 100 millisecond(s)

digitalWrite(12, HIGH); delay(1000); digitalWrite(12, LOW); delay(60);

digitalWrite(11, HIGH); delay(1000); digitalWrite(11, LOW);

OBSERVATION /DISCUSSIONS:

NIL

PERCENTAGE ERROR (IF ANY):

NIL

RESULT /OUTPUT /SUMMARY:

Blinking of LED was verified after uploading the program.

GRAPH (IF ANY):

NIL

LEARNING OUTCOMES:

- 1. Understand the concept of Arduino.
- 2. Design of circuit using Arduino.
- 3. Verify the circuit by programming. 4. Understand the concept of LED.
- 5. Understand the working of LED.

LEARNING OUTCOMES

- Identify situations where computational methods would be useful.
- Approach the programming tasks using techniques learnt and write pseudo-code.
- Choose the right data representation formats based on the requirements of the problem.
- Use the comparisons and limitations of the various programming constructs and choose the right one for the task.

EVALUATION COLUMN (To be filled by concerned faculty only)

Sr. No.	Parameters	Maximum Marks	Marks Obtained
1.	Worksheet Completion including writing learning objective/ Outcome	10	
2.	Post Lab Quiz Result	5	
3.	Student engagement in Simulation/ Performance/ Pre Lab Questions	5	
4.	Total Marks	20	